If it's not what You are looking for type in the equation solver your own equation and let us solve it.
18x^2+38x+4=0
a = 18; b = 38; c = +4;
Δ = b2-4ac
Δ = 382-4·18·4
Δ = 1156
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1156}=34$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(38)-34}{2*18}=\frac{-72}{36} =-2 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(38)+34}{2*18}=\frac{-4}{36} =-1/9 $
| 9/4y-12=1/4y−4 | | 21.6=(1/2)*30*v^2 | | 5x/8=-30 | | 410=(22/7)*6^2*h | | (6x+29)=(17x–9)0 | | 4/2=2/x+4 | | a÷(-3)=-5 | | x+16=-11 | | 33+18=29x | | 3(x+5)+4(x-2)=4(x+6) | | 3(x+4)-20=13x-4 | | 3x/1.025^6+1.025^8=2641.35 | | 4(x+5=x+41 | | 5a^2+10a+3=0 | | 4.6=6t | | y=640-y^2/12 | | (29/5)y=187/48 | | (4/5)y=9/16-(y+2/3)5 | | 4/5y=9/16-(y+2/3)5 | | 3y+7=19-y= | | 5x–3=3 | | h*8=40 | | b10=15 | | 3t+4=2t+85 | | 1,4x=-70 | | 3t+4=2+t+85 | | X+24x=11 | | 4x+8=5(x-2)+18 | | x+1.2=1.8×0.4 | | 4x/3=12/13 | | 2e+5=12 | | 2(3x+5)=18+4x |